Contents

Letter of Promulgation ... 1

Executive Summary ... 2

Sea Power Continuum ... 3

Fleet Coordination .. 4

Conclusion ... 8

On the Cover: Coast Guard Seaman Craig Senczyszyn secures a NOAA buoy to the deck of USCG Cutter ALDER in western Lake Superior. ALDER is part of Operation Fall Retrieve, which switches vital buoys in the Great Lakes with more durable ice buoys before the winter freezes the Lakes.

Opposite Page: NOAA Ship OSCAR DYSON at anchor off the coast of Alaska.
Since the birth of our Nation the United States Coast Guard (USCG) and the National Oceanic and Atmospheric Administration (NOAA) have successfully and frequently supported each other’s missions through cooperative efforts and joint operations. We do this to promote our Nation’s economy, sustain our natural resources, and save lives from the perils of the sea. Our partnership must grow to keep pace with scarce federal resources and growing demands placed upon the maritime commons.

The USCG and NOAA best serve the Nation when we deliberately prepare and operate our fleets to support each other. This plan sets the course to achieve this goal. It provides direction and guidance for our Services to achieve commonality and interoperability. It strengthens the Nation’s sea power by supporting the projection of soft power through maritime governance and sovereign presence. It also achieves strategic priorities promulgated by the United States Coast Guard and National Oceanic and Atmospheric Administration Cooperative Maritime Strategy.
Executive Summary

The USCG and NOAA share a legacy of collaboration stretching back to the beginning of our Nation. Over 207 years of mutual interests and intersecting missions have given rise to productive partnerships in the maritime and atmospheric domains. Common throughout these partnerships is reliance upon people and capital assets – uniformed service members and civilian personnel, ships, boats, aircraft, satellites, and autonomous and remotely piloted vehicles. These resources are employed to support our Nation’s economic welfare and sustain our natural resources. They also form the basis of, and contribute to, the United States’ ability to project soft sea power.

As demand increases on the oceans, Great Lakes, rivers, and coasts to provide transportation, energy, food, and recreation, the challenges faced by the USCG and NOAA to execute their missions will also increase. Scarce fiscal resources require Federal entities to find new and novel partnerships, and pursue cooperative endeavors where missions align across organizational boundaries. These cooperative relationships will gain efficiencies and allow USCG and NOAA to maintain mission excellence. This plan presents a framework to guide cooperation in the operation and maintenance of marine and aviation platforms. It provides the following focus areas for increased collaboration:

- **People:** Explore personnel exchanges for training, exercises, and professional or program development via temporary or permanent marine, aviation, or shore support assignments.

- **Maintenance, Logistics, and Facilities:** Examine commonality of ship and aircraft parts, warehousing nodes, and opportunities to coordinate maintenance and readiness sustainment work. Coordinate in the planning, design, construction and tenancy of home port and airport facilities to maximize utilization of existing and planned infrastructure.

- **Commonality:** Where feasible, leverage buying power for common systems across assets.

- **Joint Operations:** Leverage and expand capacity through joint operations and information sharing between aligned programs.

- **Research, Development, Test and Evaluation:** Collaborate in research, development, test and evaluation activities. Transition research and development to operations and maintain strategic advantage.

- **Coordinating Mechanisms:** Engage leadership of each organization in strategic planning fora to share relevant challenges and opportunities, and set the course toward enhancing mutually beneficial cooperation. Promote regional coordination and operational leadership meetings.
The United States projects sea power through a National fleet of marine and aviation assets. Sea power is a continuum. It is comprised of commissioned ships capable of projecting hard and soft power throughout the world. The United States Navy (USN), USCG, and NOAA comprise the full spectrum of national sea power. The USN contributes hard power through ships that provide war fighting capability. The USCG operates in the realm between hard and soft power, operating as a specialized service in the Navy in times of war, supporting defense operations, and providing deterrence and maritime governance functions. NOAA's commissioned ships complete the continuum, projecting soft power through sovereign presence while collecting environmental intelligence around the world. Partnerships between all three services, as well partnerships between NOAA and USN in scientific and operational endeavors strengthen national sea power. This plan strengthens the projection of soft sea power by exploiting common interests, resulting in a stronger and more capable fleet.
FLEET COORDINATION

Coordination between the USCG and NOAA fleets focusing on people; maintenance, logistics, and engineering; commonality; joint operations; research, development, test and evaluation; and strategic and operational coordinating mechanisms will benefit the Nation.

People
In August 2012, NOAA’s officer accession program began the process of creating a Joint Officer Training Center at the USCG’s Officer Candidate School. The resultant joint service officer training program is arguably the most powerful enabler of fleet coordination. The professional relationships, service mission understanding, and trust developed between USCG and NOAA Officer Candidates through the OCS curriculum has already begun to yield closer ties and unity of effort as the next generations of USCG and NOAA leadership embark upon their careers. Building upon the joint service officer training program concept, we will examine our training portfolios with an eye toward increasing the proficiency of our personnel by providing interagency training and developmental opportunities.

USCG and NOAA have a long history of exchanging personnel for specific missions and for professional development with positive results. Opportunistic, operational-level temporary duty assignments have created tremendous value for our programs and for the professional development and expertise of our workforce. These opportunities are ripe for expansion to include long term details and permanent change of station assignments to activities and units afloat, ashore, or in the air.
Maintenance, Logistics and Facilities
The NOAA fleet and modern USCG buoy tenders and ice breakers share commonalities in command, control, and communication, as well as in power generation, machinery automation, and other primary ship systems. Ships require shore support facilities and aircraft require ground-based support to conduct preventive and corrective maintenance. These assets also require home port and airport facilities from which to operate. Commonalities in marine and aviation platforms and in the location and maintenance of home ports and airports are fertile ground to find efficiencies and leverage expertise. USCG and NOAA will investigate joint use, development and/or expansion, of ship home port and airport facilities. We will leverage best practices in supply chain management and maintenance and repair services.

Commonality
Enhanced interoperability between fleets is a desired outcome of collaboration as well as a focus area to advance fleet plan goals. We will explore common procedures and research standardized C4IT (Command, Control, Communications, Computers and Information Technology) and navigation systems aboard our platforms to enhance interoperability. Commonality of systems will support our ability to seamlessly exchange personnel when needed, collaborate on joint operations, and leverage each other’s platforms for sensor deployment and data acquisition.

NOAA Ship OCEANOS EXPLORER, NOAA Survey Vessel BAY HYDROGRAPHER II and a CG Response Boat Medium in Baltimore Harbor.
Joint Operations

Opportunistic and low cost projects will form the majority of joint operations over the short term. Working together, the Coast Guard and NOAA are optimally positioned to address complementary emerging issues such as the Oceania Maritime Security Initiative; climate buoy array maintenance; fisheries enforcement and fisheries resource surveys; and bathymetric surveys/waterways management missions.

Achieving long term and substantial success in joint operations requires NOAA to invest resources and provide some multi-mission capabilities in the existing fleet, and to include common capabilities in ship requirements for the future. Facilities and equipment to handle classified information, secure communications, and re-establishment of armories and small arms training are critical and fundamental to supporting robust joint operations capability.

Research, Development, Test and Evaluation (RDT&E)

New technologies serve to provide strategic advantage and advance the missions of the USCG and NOAA. Whether applied to the interdiction of dangerous drugs at sea or to the collection of environmental intelligence in the Arctic to prepare for oil spills, RDT&E collaboration has the potential to reap substantial benefits for each organization.

NOAA’s research and development activities have a track record of producing novel solutions to complex ocean and atmosphere monitoring requirements. Creative solutions and unique approaches are integral to the pursuit of environmental intelligence. The discoveries made and the knowledge gained from basic research can have profound impact on the efficacy of at-sea missions.

Additionally, the employment of autonomous and remotely piloted systems, the miniaturization and development of new sensors, and the application of NOAA’s remote sensing tools have, and are poised to continue to enhance USCG missions. Similarly, the availability of each other’s assets as platforms of opportunity to observe and collect data or deploy instruments can and has served as force multipliers for both organizations.
Strategic and Operational Coordination Mechanisms

Awareness of each other’s priorities and challenges is required to identify opportunities for mutually beneficial collaboration. Processes and forums to manage operations and set priorities exist within USCG and NOAA. The nature of this cooperative plan encompasses a wide array of operations – human resources, marine and aviation operations, engineering, information technology, training, and research and development. Interagency engagement must be coordinated and focused across multiple areas of responsibility and orchestrated at senior levels of leadership to maintain strategic direction. Commanders, Office Directors, and Program Managers must be engaged to provide vision and direct their staff and resources to pursue meaningful collaboration and achieve success.

Recognizing the tremendous value of partnerships generated from disciplined initiative at the operational level, NOAA and USCG operational commanders are encouraged to engage with their interagency partners through participation in Command Conferences, Aviation Safety Conferences, Cutter Roundups, and other events where organizational accomplishments, challenges, and lessons learned are shared.
Conclusion

Looking forward, USCG and NOAA will face future challenges to continue providing services that support our Nation’s economic success while safeguarding our natural resources. Thoughtful and deliberate action to find and act upon opportunities and expand upon our legacy of cooperation will assist us in meeting future challenges and demand for services while we enhance our Nation’s ability to project soft sea power in an increasingly complex global landscape.
USCG and NOAA ACRONYM GLOSSARY

AA – Assistant Administrator
ACO – Association of Commissioned Officers
ACOE – Army Corps of Engineers
ACPARS – Atlantic Coast Port Access Routing Study
AFSC – Alaska Fisheries Science Center
AGO – Acquisition and Grants Office
AIS – Automatic Identification System
ALCON – All Concerned
AMAP – Arctic Monitoring and Assessment Programme
AOC – Aircraft Operations Center
AOML – Atlantic Oceanographic and Meteorological Laboratory
AOOS – Alaska Ocean Observing System
ATON – Aids to Navigation
AWS – Alert Warning System
BCA – Business Case Analysis
BLUF – Bottom Line Up Front
BOTC – Basic Officer Training Class
BSEE – Bureau of Safety and Environmental Enforcement
CAMSLANT – Communications Area Master Station Atlantic
C&GS – Coast and Geodetic Survey, predecessor organization of the NOAA Corps
CASP – Center for Arctic Study and Policy
CCG – Commandant of the Coast Guard
CENCOOS – Central and Northern California Ocean Observing System
CFSAC – Commercial Fishing Safety Advisory Committee
CHOW - Capitol Hill Ocean Week
CIO – Chief Information Officer
CG-711 – Office of Aviation Forces (Capabilities)
CG-721 – Office of Specialized Capabilities
CG-731 – Office of Boat Forces (Capabilities)
CG-741 – Office of Shore Forces (Capabilities)
CG-751 – Office of Cutter Forces (Capabilities)
CG-761 – Office of C4 & Sensors Capabilities
CGA – Coast Guard Academy
CGC – Coast Guard Cutter
CG-CPE – Office of Crisis & Contingency Planning and Exercise Policy
CGDN – Coast Guard Data Network
CG-FAC – Office of Port & Facility Compliance
CG-MLE – Office of Law Enforcement Policy
CGMS – Coast Guard Messaging System
CG-MSR – Office of Maritime Security Response Policy
CG-NAV – Office of Navigation Systems
CGPAAS – Coast Guard Personnel Accountability and Assessment System
CGSW – Coast Guard Standard Workstation
CG-WWM – Office of Waterways and Ocean Policy
CGOA – Coast Guard Officers Association
CIMES – Center for Island, Maritime and Extreme Environment Security, http://www.cimes.hawaii.edu/
CMTS – U.S. Committee on the Marine Transportation System
LNM – Local Notice to Mariners
LNO – Liaison Officer
LOA – Length Over All
LODO – Line Office Diving Officer
MAR – Mission Analysis Report
MARPOL – International Convention for the Prevention of Pollution from Ships
MDA – Maritime Domain Awareness
MERPAC – Merchant Marine Personnel Advisory Committee
METOC – Meteorology/Oceanography, Meteorological/Oceanographic
MIST – Mobile Integrated Survey Team
MFCMA – Magnuson-Stevens Fishery Conservation and Management Act
MHP – NOAA’s Maritime Heritage Program
MIZOPEX – Marginal Ice Zone Observations and Processes Experiment
MNS – Mission Needs Statement
MOA – Memorandum of Agreement
MOC-A – Marine Operations Center – Atlantic (NOAA’s “LANTAREA”)
MOC-P – Marine Operations Center – Pacific (NOAA’s “PACAREA”)
MOC-PI – Marine Operations Center – Pacific Islands
MOU – Memorandum of Understanding
MSO – Marine Science Officer
MSO – Marine Safety Office
MSR – Mandatory Ship Reporting
MSRT – Marine Security Response Team
MTS – Marine Transportation System
MXAK - Marine Exchange of Alaska
NAIS – National Automatic Identification System
NAVAIR – Naval Air Systems Command
NAVSAC - Navigation Safety Advisory Council
NC – NOAA Corps
NCDC – National Climatic Data Center
NCOTC – NOAA Corps Officer Training Center
NDBC – National Data Buoy Center
NDC – NOAA Diving Center
NDP – NOAA Diving Program
NDSB – NOAA Diving Safety Board
NEFSC – Northeast Fisheries Science Center
NESDIS – National Environmental Satellite, Data, and Information Service
NGA – National Geospatial-Intelligence Agency
NGDC – National Geophysical Data Center
NHC – National Hurricane Center
NHHHC – Naval History and Heritage Command
NIU – National Intelligence University
NMC – National Maritime Center (CG Merchant Mariner Credentialing Center)
NMFS – National Marine Fisheries Service
NMML – National Marine Mammal Laboratory
NODC – National Oceanographic Data Center
NWFSC – Northwest Fisheries Science Center
NOP – National Observer Program (a NMFS Science Program)
NOS – National Ocean Service